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We propose a third physical logics. The first was classical (C) logics with 
commutative distributive AND and OR. The second is commutative quantum 
(CQ) logics, with commutative nondistributive AND and OR. The third logics, 
Q, has noncommutative nondistributive AND and OR; Q D CQ ~ C. Q predicates 
are the rays in a Grassmann double algebra of extensors, where CQ predicates 
are the subspaces of a Hilbert space. The AND and OR of Q are projectively 
represented by Grassmann's progressive and regressive products. Q supports a 
quantum set theory appropriate to quantum topology. Here Q is applied to a 
toy theory of the topology of time. It preserves translational invariance and 
replaces singular delta-function propagators by finite Gaussians. 

1. I N T R O D U C T I O N  

In classical theoret ical  physics we ult imately express all variables o f  
any stem unde r  study, and  relations a m o n g  them, in the universal language 
o f  set theory.  Von N e u m a n n  (1932) recognized that  quan tum theory  
modif ied the under ly ing logic and set theory  for  quanta,  and spoke of  a 
" q u a n t u m  set theory"  that  would  p resumably  play  the same universal role 
for  quan tum physics that  the usual,  or  classical, set theory  does for  classical 
physics;  but  he did not  complete  its construct ion.  Von N e u m a n n  (1932) 
and Birkhoff and von N e u m a n n  (1936) p roposed  that  the logical particles 
o f  quan tum logics, the qua n t um  equivalents o f  A N D ,  OR,  NOT,  and IF, 
do  not  obey  the laws o f  Boolean  algebra, but  those o f  the o r t homodu la r  
lattice o f  closed linear subspaces  o f  a Hilbert  space. Predicates, classes, 
and  sets o f  quan ta  are represented by Hilbert  subspaces.  These A N D  and 
O R  opera t ions  are idempotent ,  commutat ive ,  and nondistr ibutive.  
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This commutative quantum (CQ) logics has a strong classical com- 
ponent. The predicates it represents by vectors of a Hilbert space are of 
order 1 (predicates about quanta, not about predicates) and degree 1 (pure 
cases, not mixtures). These are subject to quantum superposition. Its higher- 
order and higher-degree predicates are not. This is physically reasonable 
for macroscopic operations, but it is also limiting, in that it excludes 
microscopic quantum operations. In this paper we propose as a further step 
toward a universal algebraic quantum physical language a noncommutative 
one called Q which is richer than CQ in much the way that CQ is richer 
than C, having a still stronger superposition principle; namely, one which 
applies to higher-degree and higher-order predicates as well as to first- 
degree, first-order predicates. This goes beyond the Copenhagen quantum 
theory, which insists that the observer is classical. 

In its simplest and most natural form Q forces us to regard all bosons 
as pseudobosons composed of fermions. The generalization to admit the 
existence of proper bosons is straightforward but not plausible and is omitted 
here. 

Our search for Q began with the observation (Finkelstein et al., 1959; 
Beth, 1961) that a mathematical set is actually a Fermi-Dirac ensemble, in 
that its occupation numbers are restricted to 0 and 1 and the interchange 
of its elements is ignorable. Further, a physical set of electrons is a Fermi- 
Dirac ensemble. We therefore constructed a quantum set theory by replacing 
the classical power-set operation 

P: X~->P(X) 

by the operation of Fermi-Dirac "second quantization" 

Q: H~,Q(H) 
transforming each Hilbert space H into the normed exterior algebra over 
H. This observation led successively to a spacetime code, to Clifford and 
Grassmann algebraic candidates for Q, and to the recent proposal (Finkel- 
stein, 1987) that the quantum correspondent of P(X) is more accurately 
the functor E(H), the extensor algebra over H defined below. In all that 
work the Hilbert-space-based quantum logics itself was assumed to be 
correct, until now. 

Now we note that even the first-order quantum predicate algebra of 
the usual quantum theory must be revised in the process of constructing 
this quantum set theory. The arena E for the higher-order quantum logics 
is not merely a Hilbert space but also an extensor algebra. For uniformity 
this must also be true for the first-order logics. This has the following 
consequences. 

The normed extensor algebra E(H) admits operations corresponding 
to AND and OR, which we call QAND and QOR, which are projectively 
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represented, as described below, by Grassmann's progressive and regressive 
products of extensors. These Q operations are still further from Boolean 
algebra than the CQ operations, being noncommutative as well as nondis- 
tributive. Nevertheless, they reduce to familiar commutative orthomodular  
lattice operations in appropriate special cases. Q is not a lattice, but a 
"noncommutat ive lattice"; and not a poset but a "noncommutat ive poset". 

The system for which Q is designed is quantum-spacetime, a synthesis 
of  the theories of quanta and spacetime. From the beginning of quantum 
theory it was recognized that a quantum theory of gravity was needed to 
take into account the reaction of quanta upon the gravitational fields that 
guide them. Latter-day developments in gravity theory and cosmology call 
for such a synthesis in order to describe cosmogenesis and other events 
which appear  as singularities in the continuum theory. 

This synthesis seems to require a quantum-spacetime topology, on the 
following grounds: 

Since the resultant of  many future-null connections is timelike or null 
but not spacelike, the principle of causality can be reduced to the principle 
that only future-null connections actually exist in the microtopology of  
nature. But what is future-null is determined by gravity and is itself a 
quantum variable. Therefore a quantum theory of gravity likely waits upon 
a quantum theory of microtopology. 

This leads one to entertain cellular alternatives to the continuum, along 
the lines of  cellular automata or neural networks whose sole dynamical 
variable is the connection pattern, the physical topology. 

A topology is at least a set of  sets, namely the open sets, and so the 
first attempt at a quantum topology ought to be a quantum set of quantum 
sets. Events are assigned order 0, sets of events order 1, and sets of  such 
sets are said to be of  order 2. (We apply the term order uniformly to both 
predicates and sets.) Thus, a quantum topology calls for a quantum theory 
of  higher-order sets, or equivalently, of higher-order predicates. Other ways 
of  expressing topology have been considered besides the open sets, but they 
all use higher-order set theory. 

CQ provides a quantum set theory only of the lowest order and degree. 
Second-order predicates (predicates about predicates) are Boolean in the 
CQ logics. Q, however, includes a higher-order quantum logics. Here we 
develop the language Q and apply it to a toy model of quantum time. 

2. EXTENSOR ALGEBRA 

Birkhoff and von Neumann (1936) arrived at lattice logics by abstrac- 
tion from the subspaces of  Hilbert space, which form the predicates of  the 
empirical logic of quantum mechanics. CQ logics is an algebraic theory of  
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the subspaces of Hilbert space. CQ logics is algebraic only in the generalized 
sense of universal algebra, not in the sense of linear algebra, for it has no 
additive group. 

Grassmann (1844) already proposed a remarkable algebraic theory of 
subspaces, and one quite different from yon Neumann's, being linear alge- 
braic. It is obviously superior to CQ lattice algebra for practical quantum 
physics, for it includes the algebra that is customary for fermionic quanta. 
Grassmann's theory, however, is not what has become known as Grassmann 
algebra, which omits half of Grassmann's structure. The alternative which 
Grassmann provides to the lattice L(H) of H is called the extensor algebra 
over H, designated by E(H) .  Q logics use Grassmann's theory, suitably 
extended, rather than von Neumann's. 

We begin with a summary of the CQ logics to facilitate the transition 
to Q. CQ logics start from a Hilbert space H of dimension N (possibly 
N = No). As a Hilbert space, H is provided with a Hilbert anti-isomorphism 
t to its dual space t H ;  we write all operators to the left of their operands, 
even the operators t and * 

Instant-based (synchronic, prerelativistic) quantum theory deals with 
two basic modes of operations on a physical system, called input and output, 
represented in the simplest case by vectors of H and dual vectors of tH, 
respectively. (This description of quantum theory comes closer both to 
current physics practice and to the Copenhagen form of quantum theory 
than does yon Neumann's, who spoke of only one mode of input/output 
operation, "measurement," represented by projectors. The difference 
between the bimodal and the unimodal formulation is particularly significant 
for quantum cosmology and thus for quantum-spacetime. We adopt the 
bimodal logics both for Q and CQ.) 

The diachronic (a.k.a. functional, relativistic) quantum theory describes 
input and output operations as positive and negative frequency subspaces 
of one space of "sources," but is still bimodal in that it reserves the dual 
space for "fields" (in the generalized sense that includes action principles). 
For the sake of familiarity we shall interpret Q synchronically at first, and 
diachronically only later, in the relativistic applications of Q. 

First we summarize the properties and notation of the extensor algebra 
E = E ( H )  over a given Hilbert space H; then we discard H in favor of E. 
H is only scaffolding. Q is based directly upon an extensor algebra E, and 
H itself survives in Q only as one of two completely symmetric subspaces 
of E. In the principle application we construct E inductively from C alone. 

The elements of structure of extensor algebra are schematically 

+, c, Is<, v, A,*,* 

which we take up in turn. 
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Extensors. The elements of  an extensor algebra E(H)  are called 
extensors ( lineale Ausdehnungen, extensive Gr6ssen by Grassmann) over H. 
These are the simpler nontrivial words of the language Q. Like Dirac's kets, 
they represent coherent uniform quantum input operations transferring a 
quantum from experimenter to experimentee, the beginnings of  experiments 
(in the synchronic theory; later, sources). These we call input extensors and 
write as (a I or �9 or ( ~ ) .  Extensors form a complex linear space, with 
addition + and multiplication by elements of  C having the usual quantum 
meanings. (We anticipate reducing the complex coefficients to integers in 
a later, more fundamental theory, based upon an extensor module rather 
than an extensor algebra.) 

Dual Extensors. Dual extensors are linear functions E-~ C and make 
up a space r E ( H ) .  Like Dirac's bras, they represent outputs, the ends of  
experiments (later, fields). They are written Ifl( or �9 or (qbn) so that an 
operator can be written as an arrow (ilia(, representing throughput. The 
value or contraction of  a dual extensor ~b with an extensor ~b is written 
[#(~[ or qb(~) or ~n ~ " ;  its physical meaning is that it vanishes for forbidden 
transitions. 

Hilbert dual. E(H)  is a Hilbert space like H. For every extensor 
there is given a Hilbert-dual extensor t~b associated with $ by the Hilbert 
dual or adjoint operation t,  an (antilinear) anti-isomorphism t: E-~ t E  
induced by the usual adjoint t already given on H ~  E(H).  The Hitbert 
norm of an extensor ~F is written [IWII or #~W. 

Two Products. Like a lattice, an extensor algebra E (H)  has two associa- 
tive operations, designated by v and A (QOR and QAND, quantum non- 
commutative forms of OR and AND),  with respective units ~ and ~'; 
Grassmann's progressive and regressive products of extensors. The classical 
correspondent of  the v-product  is a partial operation different from OR 
and XOR which was introduced by C. S. Peirce and has long been known 
as the disjoint union; we designate it by POR and its dual by PAND. 

Degree. The extensor algebra E(H)  has a grade g called "degree" 
(Grassmann's Stufe) ranging from 0 to N, the dimension of  H;  and another 
grade N - g ,  the codegree. Degrees add for v-products, and codegrees add 
for A-products. H is the first-degree part of E(H).  If N is infinite (Grass- 
mann did not develop this case), E is a direct sum of  a subspace of  finite 
degree and infinite codegree and a subspace of infinite degree and finite 
codegree. This differs from the lattice logic of  H, which includes projections 
whose dimension and codimension are both infinite. The degree g corre- 
sponds to the modulus of  lattice theory and the multiplicity (degree of  
degeneracy) of  spectroscopy. 
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Hodge dual, Grassmann placed the greatest possible emphasis upon a 
dual symmetry between A- and v-products, expressed by an antilinear 
mapping 

*' E ( H ) ~ E ( H )  

called the Hodge dual nowadays. Grassmann even refused to introduce 
distinct multiplication signs for the two products, rather than disturb this 
perfect symmetry; one had to infer which products he meant in a formula 
f rom  context. We use the signs A and v of  Peano, but in every other way 
we maintain Grassmann's symmetry. The Hodge dual * is QNOT, the 
Q NOT, and complements degree; if ~h has degree g, then *0 has degree 
N - g .  If  N is infinite and g is finite, N - g  is understood to be infinite. 

Units. E is an exterior algebra in two ways: with exterior product  v 
and unit 1 = ~, and with exterior product A and unit *1 =~'. E is closed 
under finite v-products and A-products. This statement includes null v- 
products and A-products; and the v-product  of no elements is 1 = ~, while 
the A-product of  no elements is "1 =1'. Thus, this ~tatement implies that 
both units belong to E. 

The Hilbert and Hodge operators t and * uniquely determine each 
other. They are the same element of  structure expressed in different terms. 
I f  0 is an input extensor, or creator, the Hilbert dual *~b outputs (or 
annihilates) the same kind of  quantum that 0 inputs; while the Hodge dual 
tO ifiputs every other kind of  quantum but that. 

The most general extensor of  E is obtained from the vectors of  H by 
a finite number of v-products, and linear combination, or is the Cauchy 
completion of such with respect to the norm II #11 = tot#; and dually for the 
construction of E from *H. 

There are several works on extensor algebra that can be consulted for 
a fuller picture, especially Barnabei et al. (1985) and works cited there. 

3. EXTENSOR LOGICS 

C, CQ, and Q logics correspond to extensors of three ascending levels 
of  generality relative to a special basis b c H called classical: 

1. Extensors which are v-products of  basis vectors of b are called 
classical; they support a classical logic (commutative distributive). 

2. Extensors which are v-products of arbitrary vectors are called 
simple. They support a CQ quantum logic (commutative nondistributive). 

3. Extensors which are not simple are called compound. The general 
extensors, simple and compound together, support the quantum logic of Q 
(noncommutative,  nondistributive). 

To say this more fully, we require the following concepts. 
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We designate the ray of  an extensor 4 by [4 ] .  I f  [ 4 ]  = [X] ,  we write 
4 --- X and say that 4 is projectively equal to X. We call [ 4 ]  basic, simple, 
or compound according as 4 is. We call a subspace of  H basic that is a 
span of  basic vectors. 

In the logical interpretation of extensors there is a certain precise 
analogy between the extensor operations v, A, * and the respective logical 
operations u ,  n ,  -7. To put all three logics in uniform terms we define 
partial operations for lattices akin to the extensor operations v and ^, and 
express the lattice operations u and n in terms of them. We need not do 
this for an arbitrary lattice, but only for physical ones, which we suppose 
to be atomic ortholattices. 

Let L be an atomic ortholattice with OR and A N D  operations w and 
n ,  and write "0" for "undefined." 

We may use OR (w) and A N D  (n )  to define classical partial operations 
POR (v) and PAND (^) by 

a v B : = a u / 3  if a n / 3 = $  

= 0 otherwise 

a^/3:=ac~/3 if o~ u/3 = 1' 
(1) 

= 0 otherwise 

From the viewpoint of  classical logic, POR and PAND are pathological 
as well as partial. In particular, the truth value of ~ POR/3 is not a function 
of  the truth values of o~ and /3. Nevertheless, the classical operations of  
PAND and POR are better starting points for the passage to quantum theory 
than the Boolean operations; we shall take v and ^ as fundamental and u 
and n as derived. 

Proposition. For an atomic lattice, the lattice operations u and n and 
the partial operations v and ^ defined by (1) uniquely determine each other. 

Proof How u and n determine v and A is stated by the definitions 
(1). For the converse determination, first one constructs the lattice partial 
order a -</3 from v. For an atomic lattice, the lattice partial order relation 
a _</3 is equivalent to the assertion that for lattice atoms q,, a v ~O = 0 implies 
/3 v ~O = O. And we may recognize the lattice atoms in terms of v and ^ by 
their primeness: they cannot be written as v-products except trivially. Thus, 
v and ^ determine -<. Then the -<-relation determines u and n as supremum 
and infimum in the usual way. []  

Proposition. Q logics properly includes C and CQ logics as special 
cases as follows: 
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1. C case: For basic rays in E(H), the extensor operations v, A, and 
* are isomorphic to the classical operations v, A, and --7 defined by (1) for 
the Boolean algebra of  the subsets of  the basis b. In particular, basic 
extensors 0, X, 05 commute projectively: 

t~vx=-XvO 

and partially distribute projectively, in the sense that the distributive laws 

#, ^ ( x v  05)=-(O ^ x ) v ( ~  ^ 05) 

I~" V (X A 05) ~--- (I,0 V X )  A (I// V 05) 

hold when both sides are defined. 
2. CQ case: For disjoint simple rays the same operations agree with 

those of an orthomodular complemented lattice, the usual Hilbert space 
lattice of subspaces of H. In particular, simple extensors commute projec- 
tively: 0 v X -=X v ~, but neither of the operations v and ^ restricted to 
simple extensors distributes over the other. 

3. Q: For disjoint general rays these operations do not agree with those 
of a lattice, since compound extensors do not commute projectively. 

Proof Straightforward verification. [] 

Similar considerations may be carried out for the (partial) order <-. 
Due to noncommutativity, an extensor algebra E defines two (and more) 
inequivalent orders, which we write as a -</3 and/3 - ~ and define by 

,~-</3 :<=>: (VO)(O v a = o ~ q , v / 3  =0 )  
(2) 

/3 -> ,~ : ~ :  ( v q , ) ( / 3  v q, = 0 ~  v 0 = 0 )  

These reduce to a single Boolean order, a single lattice order, and dis- 
tinct (and we expect nonlattice) orders in C, CQ, and Q logics, respectively. 

Thus, we see that Q logics is a proper  noncommutative generalization 
of the commutative CQ logics. 

4. PHYSICAL INTERPRETATION 

To ground this extension of quantum logics in experiment, it is helpful 
to recall a certain systematic difference between the way Heisenberg and 
Bohr interpret quantum (io) vectors and the way that Born and von 
Neumann do. 

For background, we first recall a similar difference between two con- 
cepts of a heat reservoir R in equilibrium with a system S, say a gas, in 
statistical thermodynamics: 
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1. We can think of  R as an individual, much larger body in thermal 
equilibrium with the individual system S. 

2. We can represent R as a large ensemble of systems identical to S. 
We may call these the individual and the statistical representation of 

R. The two interpretations are expected to be physically equivalent. 
Schr6dinger (1938) adopts the statistical representation of  the heat reservoir 
because it is more definite and simpler. 

Similarly, we can think of  an input vector 0 in two physically, equivalent 
ways, individual (like Bohr and Heisenberg) or statistical (like Born and 
von Neumann):  Either: 

1. The vector ~ represents an arbitrary way of preparing the individual 
quantum system S; a preparation in the sense of Ludwig, or a member of  
a manual in the sense of  Foulis and Randal, for example. Briefly, ~ describes 
the entire experimental operation. 

2. Or the vector 0 represents a more specific way of  preparing the 
individual quantum system S, namely by random selection from an ensemble 
of quantum systems isomorphic in structure to S. Briefly, ~ describes the 
operation of  selection from a set of S's. 

The statistical interpretation is thus a special case of the individual 
one, in which the input device is a collection of quantum systems similar 
to the one being prepared. In either case the vector ~b describes not only 
the experimentee, but even more the experimenter. 

In quantum theory as in thermodynamics, the statistical representation 
of an input operation is simpler and more definite, and we adopt it. It must 
not be supposed, however, that g, represents an ensemble of  points in a 
classical phase space, say; it represents an ensemble of  physical systems 
admitting no phase space description, not an ensemble of classical systems 
(since such do not exist in nature). 

Pure, Crisp, Coherent, and Statistical Ensembles. Noncommutative 
quantum logics arise because there are more physical sets of quanta than 
are envisaged in the CQ lattice logics. Besides those described by subspaces, 
the elements of the usual CQ lattice, or the simple extensors of the Q logics, 
there are those described by compound extensors, coherent superpositions 
of simple extensors. Every subspace is represented by an extensor, with 
arbitrary phase, but almost no extensors represent a subspace. 

To avoid confusion it is helpful to distinguish four degrees of 
specification of a quantum, each a special case of the next: sharp, crisp, 
coherent, and statistical (or fuzzy). 

1. In C logics with discrete possibility space S, a sharp description is 
a point p c S, a crisp one is a subset P c S, and a statistical one is a probability 
distribution p on S. 
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2. In CQ logics, the sharp (pure, atomic, maximal) description is a 
vector ~b ~ H, the crisp description is a projection operator P in H, the 
coherent description is restricted to the sharp case, and the most general 
statistical description is by a statistical operator p on H, assigning prob- 
abilities to pure ensembles. 

3. In Q logics, the sharp description is a first-degree extensor, the crisp 
is a simple extensor, the coherent is an arbitrary extensor, and the statistical 
is a statistical operator on E ( H ) ,  assigning probabilities to coherent 
ensembles. The CQ logics deals with crisp ensembles, and the Q logics with 
coherent. 

We limit ourselves here to a Fermi-Dirac system F. (The analogous 
theory for bosons lacks the Hodge duality and the /x-product.) By a set of 
F 's  we mean exactly a Fermi-Dirac ensemble of F's,  on the  grounds that 
for both sets and Fermi-Dirac ensembles, the occupation numbers are 
restricted to 0 and 1 and the order of systems is ignorable. Since Fermi-Dirac 
ensembles are maximally described by multivectors (skew tensors) over/4,  
we may specify a set of F ' s  by a multivector over H. In the presence of the 
Hilbert inner product, a multivector is also an extensor. 

It is easy to imbed the CQ lattice logics within the Q extensor logics. 
Each element of the Q logics is a subspace P, and may be represented as 
Grassmann intended by the simple extensor formed by v-multiplying the 
vectors in a basis for P. 

In addition there are compound extensors. Grassmann had no meaning 
for these precisely because they do not represent subspaces. They represent 
quantum superpositions of preparations described by subspaces, and rep- 
resent physically possible preparations not represented in QC logics. 

For example, extensors of degree 1 represent "pure states" in the CQ 
logics, while those of degree 2 represent "mixed states," mixtures of two 
degree-I inputs. A coherent superposition of a degree-1 and a degree-2 
input, or of two grade-2 inputs, does not occur in the CQ quantum logics, 
but does in Q. 

An interpretation of  an input vector is an experimental input operation 
described by the vector. It is not difficult to design physical input operations 
to go with these theoretical ones. We may carry out such an operation in 
two steps: the formation of  a coherent ensemble, and the extraction of a 
member of that ensemble: 

Formation. A helium atom with its ground energy is a coherent 
ensemble of two electrons. To form a coherent superposition of a one- 
fermion and two-fermion input, to be sure, violates the statistics superselec- 
tion rule of Wick, Wightman, and Wigner, and requires one to take into 
account quantum variables of the experimenter which are usually not 
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considered. But no such problem arises in the formation of coherent super- 
positions of two degree-2 input vectors; for example, a difermion of spin 
S = 1 may be resolved by a Stern-Gerlach operation into a coherent super- 
position of vectors with z component of spin Sz = 1, 0, and -1.  

Extraction. The operation of extracting one member of a coherent 
ensemble at random may be approximated by a stripping reaction, where 
a projectile combines with one particle of a target and carries it off. 
We must carry out the stripping operation on the contents of the target 
region without determining the contents more precisely than by the prior 
preparation. 

The duals to these input operations are output operations. We omit 
their physical description here. To retain all phase data it may be necessary 
to use what is left of the input ensemble after the extraction operation--in 
the given example, an He + ion-- in carrying out the output operation. 

The inclusion of such a quantum ensemble (say, a single helium atom 
with its minimum energy) as part of the apparatus is not envisaged in 
Copenhagen quantum theory. To be sure, the CQ logics could describe this 
input operation by a statistical operator in the single-fermion Hilbert space. 
This would lose phase information that is retained in the extensor descrip- 
tion. The CQ logics could also describe the new one-fermion experiments 
of Q as special many-fermion experiments. But the extensor logics of many 
fermions is richer still. At the end, for any given physical system the Q 
logics is a proper extension of the CQ quantum logics; it has a larger class 
of predicates. 

We may think of an extensor �9 as explicitly representing the creation 
of a Fermi-Dirac ensemble, to be followed implicitly by the selection of a 
member. This is the extensional way of defining a class: by giving its 
members. The product �9 v �9 represents the successive execution of the two 
creation operations q~ and q~, taking into account the Pauli exclusion 
principle. QOR is noncommutative because in general the result of such a 
sequence of creation operations depends on the order of execution. 

Q is thus considerably simpler than CQ. The CQ logics describe 
predicates and sets (that is, Fermi-Dirac ensembles) of electrons by quite 
different categories of algebras: lattices and exterior algebras, respectively. 
In C logics finite predicates and sets are isomorphic, the sets being the 
extensions of the predicates. Q restores this isomorphism. 

5. HIGHER-ORDER QUANTUM LOGICS 

So much for the first-order predicate algebra. The principle gain from 
this extension of the CQ Hilbert-space-based quantum logics is its higher- 
order quantum predicate algebra. This theory is still somewhat speculative, 
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and is directed toward theories of quantum-spacetime that are not yet closely 
connected with experiment; but the simplicity and self-consistency of the 
higher-order Q theory is strong formal evidence for Q. 

Classical Construction. The basic C operation for constructing higher- 
order predicates from first-order ones is the brace {. �9 .} of  set theory. In 
general if qs is a predicate, then {qs} is defined to be the predicate of 
predicates which holds only for the predicate O. That is, {~O}(x) means that 
x = ~O; {~} is the property of being ~0. On the other hand, if ~0 is interpreted 
as a set, then {0} represents a set whose sole element is ~b. We may also 
think of the brace purely formally, as a way of making from any set of 
elements of  arbitrary degree an isomorphic replica consisting of  monads 
(first-degree sets). For instance, from a triad a, b, c we make a new triad 
{a}, {b}, {c}. 

One might just as well use primes or bars for this purpose as braces, 
writing a', b', c' for the monadic replicas of a, b, c. Following Peano, 
however, we designate {0} by ~0; we used Q0  for ~0 in Finkelstein, Jauch, 
and Speiser (1959) (because Q0 belongs to the quantified or second quant- 
ized theory) before we knew of Peano's work, which we learned about in 
Barnabei et al. (1985). We form finitely-constructible higher-order predicates 
over an object with first-order predicates C by applying to the elements of 
C the operations of v and ~. 

The Hodge dual of the empty set $ is a universe set ]' =-n$ and of ~ is 
an operator K =-n~-n [that is, for any set a, Ks :=-~(~(-na))], producing 
sets of codegree 1. Thus, the null set $ breaks the negational symmetry 
between ~0 and -70, the classical correspondent of the dual symmetry of 
Grassmann (Hodge dual). In physics this symmetry is broken by causality; 
points of  spacetime are local and their complements are not. In set theory 
it is broken by the operator ~, since L~b has degree 1, and not codegree 1. 
We therefore use ~ to express causal structure. 

To avoid the paradox of ~(]'), which cannot be an element of ~$,  we 
explicitly restrict the definition of ~ to finite sets, defining ~a = 0 for infinite 
sets ~. Similarly, K is defined only for cofinite sets. 

For simplicity we now limit attention to pure set theory, with no proper  
elements. In the classical theory this means taking for the initial class algebra 
C = 1 (the null set). In the quantum theory, it means taking for the initial 
Hilbert space H = C (the ray representing the null set). There is then only 
one lowest-order predicate, the null predicate, designated in extensor 
language by the number I c C. The corresponding set is the null set, and is 
conventionally assigned order 1. 

In classical logics we apply ~ to the first-order predicate 1 to construct 
a second-order predicate ~ 1 = {1}; then {1} represents the property of being 
the predicate 1. We describe an inductive process for making a Boolean 
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algebra SET(C) of sets or predicates of all ranks from an arbitrary finite 
class C of first-order predicates or sets. 

We define the single-element Boolean algebra B 1= {1} consisting of  
the null set. 

Given the Boolean algebra B N, the predicates of B N+I are constructed 
by bracing the elements of B N and closing with respect to the Boolean 
operations 1 and v. (One may equally say: with respect to arbitrary finite 
v-products. For the operator 1 is the v-product of no factors, the v-product 
of one factor is already present, and v gives the v-product of two factors; 
the other finite v-products follow,) Thus, if B N has cardinality C ( N ) ,  then 
the cardinality C ( N +  1) of B N+I is C ( N +  l) =2  c(N). 

Proposition. B N c B N+I. 

Proof By induction on N. N = I :  Evidently B I c B  2. N ~ N + I :  If  
B N c B  N+I, then (since the generating operations ~ and v preserve 
inclusion) it follows that B N+I c B N+2. [] 

We now define SET, the set of semifinite sets. (SET is not itself a 
semifinite set.) For brevity, we use the term "finite set" for a set which has 
a finite number of elements, which also have a finite number of  elements, 
which also have a finite number of elements, and so forth. A cofinite set 
shall be one whose complement is a finite set in this sense. And a semifinite 
set is a set that is either a finite set or a cofinite set. 

Let B ~ be the limit (that is, the union) of  all the B ~. The set B ~ is the 
set of all finite sets, which may be generated from ~ by finite numbers of 
the operations v and L. While each B N is closed under relative complementa- 
tion a ~ - ~ a  = B N / a ,  the limit B ~ is not. For each element a of  B ~ is finite 
by construction, but B ~ is infinite, and the complement of c~ in B ~ is 
therefore infinite and does not belong to any B N, nor, it follows, to B ~. 
Similarly, B ~ has a null set $ but no universal set ~. Our construction, based 
on v alone, has spoiled the dual symmetry of Grassmann. 

To repair this we shall (loosely speaking) reflect B ~ in the "plane" of 
infinite sets. "Below" the plane are the finite sets; "above," the cofinite. 
There are no sets which are both; and those which are neither are omitted 
from SEa'. 

More formally, we carry out a dual construction based on a formal 
universal class ~, the ^-product ^, and K, instead of 4, v, and ~, leading 
now to a dual sequence of class algebras *B N and their union *B ~ Each 
set in *B ~ is generated by a finite number of the operations A and K, and 
is cofinite. The co-order of a set is the number of nested K's in sequence 
in its construction from 1' by ^-products and K's. Finite co-order and 
codegree imply infinite order and degree. 

SET is defined as the union B~w *B ~. Its elements are semifinite sets. 
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Proposition. SET is closed u n d e r  v, ^, and  ~ .  

Proof I f  qJ ~ SET, then  either qJ ~ B ~ or ~0 c *B ~. In  the former  case, 
for some N, ~b c B N. T h e n  7~0 is defined as an  e lement  of B *N c *B~176  SET. 

In  the latter case we proceed dually.  �9 

The opera t ions  v, A, and  -q act in SET as shown in  Table  I. 

Proposition. The opera t ions  v and  A on SET are commuta t ive  and  
dis tr ibute  over each other. 

Proof By construct ion.  �9 

It is evident  that  SET is not  closed u n d e r  ~; in  par t icular ,  ~(~') is 
undef ined:  ~(~')=0. This is the r ansom we pay  for release from Can to r ' s  

pa radox  of  the set of  all sets. Moreover,  while  SET is closed u n d e r  v and  

A, it is not  closed u n d e r  the Boolean opera t ions  w and  n ;  such closure 

would  require a much  larger class of sets. 

Proposition. Each set a 6 SET is either finite or cofinite (of  finite comple-  
men t  in SET). 

Table I. Operations on Finite 
and Cofinite Sets a 

v �9 @* 

q~ ~* 

�9 * ~* 0 

A @ ~ *  

0 ~* 

~@ stands for a general "finite 
set and qb* for a general 
cofinite set. For example, from 
the v-table read that the v- 
product of a finite set with a 
cofinite one is cofinite ("@ v 
~* = r 
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Proof By induction. [] 

I f  ~b, . . . ,  X are all distinct Nth-order  predicates, then an example of  
an ( N +  1)th-order predicate is 

{q-' . . . . .  x }  = ~ v .  �9 �9 v ~,x ( 3 )  

Quantum Construction. The beauty of  the extensor logics is that it 
provides these classical procedures with close parallels in the quantum 
theory. Heuristically speaking, we do to basis vectors of  a vector space H 
what is classically done to points of  a possibility space S. For example,  the 
extensor algebra E(H) over a vector space H is the quantum correspondent  
of  the Boolean algebra B(S) over an arbitrary set S. The quantum correspon- 
dent of  the mapping ~ is a semilinear t ransformation ~. In some applications 
it is most convenient to take ~ to be antilinear; here, for simplicity of  
exposition, we assume ~ linear. 

To begin our inductive construction, we define E ~  C, the complex 
numbers.  This simplest possible extensor algebra, in which v and A coincide 
with ordinary complex multiplication, represents the null set (or the fer- 
mionic vacuum).  

Given the extensors of  order N, we form those of order N +  1 by 
bracing all the elements of  a basis of  E N (applying ~) and closing the 
resulting set under finite v-products  and linear combination. The Hilbert 
dual t in E N+~ is defined in terms of matrix elements of  ~ and t~t ,  which 
we determine below. 

By induction on N we form extensors of  all ranks E R, the least value 
of R for which E R contains an extensor ~O is called the order of  4'. The 
union of  the E R is an infinite-dimensional exterior algebra E ~ whose 
elements are called finite extensors. The basic extensors of  E ~ are generated 
by finite numbers of  the operations v and ~ subject to familiar identities. 
Every basic element of  E ~ is of  finite degree and order and represents a 
finite set. 

We form a space *E ~ dual to E ~ by the dual process, replacing $, v, 
and L by ~', A, and K. We define extensor operations v, A, and * on the 
direct sum E W e * E  ~ in the way we have already rehearsed with SET = B ~ W 
�9 B ~ (Table I). 

In the quantum construction there is one topological step that has no 
counterpart  in the Boolean one: We complete the extensor algebra E ~ G  *E ~ 
to form the Hilbert space of  quantum sets, which we call QET. There is a 
natural Hilbert norm on E ~, on *E ~ and therefore on E ~ O  *E ~. Cauchy-  
complet ion of  E ~ O * E  ~ with respect to that norm yields the Hilbert space 
QET. Extensors in QET may be called qets. 

We suppose that all Fermi-Dirac  objects in nature arise from the 
anticommutativity of  first-degree qets. 
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We turn now to normalizing the operator  ~. The operator  ~ raises order 
and its Hermit ian adjoint 

+L := t~t (4) 

lowers order. It is natural to follow the precedent  of  the harmonic oscillator 
raising and lowering operators when we normalize ~. To be sure, E is not 
a ladder with ~ as raising operator,  because of  its branching structure, which 
causes a hyperexponential  growth in dimension with order. Nevertheless, 
the following harmonic oscillator result is valid here too. 

By a classical qet we mean a nonzero qet that is constructed exclusively 
by finitely many  operators $, v, and ~ and their Hodge duals (without linear 
combination);  the classical qets have rays also called classical, which are 
in an obvious isomorphism to the classical sets in SEX. Classical qets are 
not normalized to unity and are either finite or co finite. We have constructed 
QET SO that the action of  the quantum L on the classical rays in QET is 
isomorphic to that of  the classical ~ on the sets of  SET. 

We also use the following concepts of  graph and extent. 
Each classical qet of  finite degree has a finite graph, a family tree 

showing its evolution from the null set, with the vertices 

__e<  (two input lines) for each dyadic operator  v 
__o__ (one input line) for each monadic  operator  
--e (zero input l ines ) fo r  each cenadic operator  $ 

We define the rank of  a classical extensor or set of  finite degree to be 
the number  of  ~ vertices in sequence at the right end of its family tree. 

Similarly, extensors of  finite codegree have graphs showing their evol- 
ution from the universal set '~, with the vertices 

- - o <  (two input lines) for each dyadic operator  A 
--o-- (one input line) for each monadic  operator  K 
__o (zero input lines) for each cenadic operator  1" 

Proposition. There exists a unique operator  ~ defined on a dense sub- 
space in QET such that: 

1. The operator  ~ obeys the relation 

*~--LtL=I (5) 

on its domain. 
2. The action of ~ on classical rays in QET is isomorphic to that of  the 

classical ~ on classical sets in SET. 
Then the operator 

R := L*~ (6) 



Q 479 

has spectrum R = 0, 1, 2 , . . .  and gives the rank. Dual statements hold for 
K ~.,~_ ~ ~, ~ _~.,~ :~ ~,. 

Proof By explicit construction. We note that a classical extensor 
obeys t0 = 0 if and only if r has degree ~ 1. Such a ~0 is an eigenextensor 
of  R = 0. We define t and t? by giving matrix elements ]O(t(tp[ and ]r 
in a classical basis for QET: They are then defined on all finite linear 
combinations of  classical extensors, which are dense in QET. 

The operator  ~ couples a basic classical extensor r of  finite degree 
only to the basic classical extensor 
classical r and O of finite degree, 

= 0  

I f  either ~h or O has finite codegree, 

t~, and with matrix element 1: For 

if O = tr 

otherwise 

the matrix element (7) vanishes. 

(7) 

The operator  *t then annihilates any classical extensor ~, that is not of  
the form t0  with O classical. (In the harmonic oscillator case this singles 
out the vacuum vector; here there are infinitely many  such vectors.) It 
couples one that is of  this form and has rank R = n to 0 with matrix 
element n: 

[ O ( ' t ( 0 [ = n  i f ~ = t O  has rank R = n  

= 0 otherwise (8) 

It is easy to verify that this defines ~ and *~ densely in QET by linearity, 
and satisfies (5) and (6). [] 

The first-degree qets have been supposed to generate all fermion 
operators;  the t operator  is supposed to be the root of  spacetime coordinates 
and momenta.  

For sets of  the special form t" 1, which Peano identified with the integers, 
the operator  R := t~t of  (6) is precisely the order operator. In general, an 
eigenextensor of  R with eigenvalue R = n has the form t ' a  where a is not 
of  the form ~/3. Then n is the order of  the eigenextensor if and only if a -= 1. 
In general, n is less than or equal to the order. We call the operator  R the 
rank. 

The physical need for the brace and t already arises in quantum 
mechanics and field quantum field theory when we must couple dynamical  
variables with spacetime points to define trajectories or fields. As long as 
spacetime is a classical set, it is possible and customary to use the classical 
bracket to couple variables with coordinates. I f  spacetime is a quantum set 
(which is a Fermi-Dirac  ensemble, we recall), then we might use the 
quantum t for this purpose,  to do quantum field theory on quantum 
spacetime. 
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We do not advocate this use of ~. It copies classical field theories too 
literally. The main field theory is gravity, which describes the causal connec- 
tion. In the quantum case, it is more natural to use ~ to couple spacetime 
points directly to each other, and so to describe the causal connection by 
a network rather than a field. With the network as dynamical variable there 
is no fundamental need for fields. This is the main motivation for Q. 

6. QUANTIFIERS 

Physicists have dealt with quantification in quantum logics elegantly 
since quite early in the development of quantum theory. If  ~ ~ H describes 
one fermion, so that an ensemble is described by an extensor ~ c E(H),  
then in physics one uses the numerical quantifier N ( ~ )  (for "the number 
of fermions of  the kind ~b," also called the ~b-occupation number operator) 
in preference to the Aristotelean quantifiers V ("for  every fermion") and 
3 ("for  some fermion").  N ( 0 )  is a linear operator on E(H)  -~ E(H)  defined 
in Q as follows. 

For any extensor ~b let us write 0v for the linear operator on extensors 
of left v-multiplication by tp; for all ~,, X c E(H) ,  

O~x := OvxcE(H) (9) 

Similarly we write O ̂  for left A-multiplication by ~. 
The operator (9) is a creation operator. Its Hermitian adjoint t 0 " t = :  

*(0") is an annihilation operator identical with (*#)^, left A-multiplication 
by *~b, the Hodge dual of  q,. (We thank G.-C. Rota for pointing this out.) 

Let us normalize ~, to 1. Then ~, and +~, obey "canonical anticommuta- 
tion relations" and one defines the number operator N ( 0 )  by 

N(~b) := 0 ' 0  (10) 

For every normalized 0, N(O) is a positive linear operator mapping 
E(H)---> E(H)  with eigenvalues, N ' =  0, 1. The eigenvalue equation 

N(~b)W = n ~  (11) 

asserts that there are n elements of the kind O in W. The eigenvectors of 
N(O) belonging to eigenvalue n = 0, 1 are the homogeneous extensors of 
degree n in ~. Those with n = 1 are of the form 0 v a for some a;  those 
with n = 0  lack any factor of # and are annihilated by *0- Thus, N ( 0 )  
agrees with the classical notion of the number of O's. 

The sum over all ~ in a basis b, 

N : =  • N(~,) (12) 
@~b 



Q 48J 

is the total number operator; the eigenvalue equation N ~  = n ~  asserts that 
there are N elements in ~ .  It is easy to construct a universal quantifier 
and existential quantifier U using these numerical quantifiers. 

The classical existential operator U :  S->S may be defined by the 
conditions that 

U [{4'}] = 4', U [ 4 ' u x ] = [ U  4 ' ] u [ U x ]  (13) 

Similarly, we might wish to define the extensor existential partial 
operator V: QET-->QET (the disjoint union) by the condition that it be linear 
and for simple extensors obey 

V [{4'}]  = 4', V [ 4 ' v x ]  = V 4 ' v V x  (14) 

If  either 4' or X has even degree, this leads to the unexpected nonclassical 
result 

V [{4'} v { x } ]  = 4' v x = x  v 4' = V [ {x }  v {4'}1 = - V  [{4'} v { x } ]  = o (15) 

This relation stems from the difference between the statistics of 4' 
(quasi-Bose if 4' is of  even degree) and ~4' (Fermi in every case), or the 
fact that ~ is a superoperator (mixes statistics). We may still imbed classical 
quantifiers within the quantum theory, however, despite (15). The quantum 
entity corresponding to an element e of  a set is not an extensor 4', which 
is a creator, nor a dual extensor *4', which is an annihilator, but the bilinear 
v-product 4' v*4, which is, according to the next section, a characteristic 
function, and the unit set of  e is represented by ~4' v ~'4'. Such even-degree 
elements commute, and avoid the paradox of  (15). 

7. FUNCTIONS 

While the language of set theory generates an infinite family of nouns 
with ease and elegance, it stumbles and stutters on verbs. The simplest 
mapping or function is the arrow, which we write as fi <--a. It r epresen ts  
an operation that transforms a into ft. It creates insuperable problems for 
set theory. A frequently used expression for fi ~ ce is the set {a} w {{a} w {fl}} 
of  degree 2. This choice is obviously gratuitous; {a} u {{a} u {/3}} naturally 
represents a pair, not a transformation, and could just as well be used to 
represent the inverse arrow a ~/3, for example. (For all we know, it is; we 
have not actually looked the standard convention up, since we will not use 
it.) Sets do nothing, they simply are. The idea of  doing something is unnatural 
to set theory. A mapping of  sets is not naturally a set. 

This deficiency in set theory stimulated von Neumann (1925), for 
example, to provide a variant of set theory which [like the famous A calculi 
of  Sch6nfinkel (1924) and Church (1941)] takes the function concept as 
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primitive and defines sets in terms of functions, instead of the converse. 
One element of the von Neumann set theory survives in von Neumann-  
Bernays set theory as the distinction between sets and classes, originally a 
distinction between arguments and functions, which von Neumann made 
to forestall paradoxes of self-reference. Von Neumann set theory as a whole 
was too awkward to be practical, however; it preceded the practice of 
quantum physics, which elegantly constructs functions algebraically, and 
which we follow in Q. 

In quantum field theory we regard a first-degree extensor q, as a creator, 
an elemental partial map and its Hilbert dual tO as an annihilator, the 
quasi-inverse partial map. An arrow, an elemental map A: b ~ a, is the 
product of an annihilator of its origin a and a creator of its target b: 

A = b t a  

That is, the function A means "Annihilate a and then create b." A more 
general map is a sum of such arrows. This is how Q represents the throughput 
operations that connect input and output operations. 

It is then possible and natural to express more general mappings, partial 
mappings, and multivalued mappings as elements of the enlarged extensor 
algebra QET(t):= QET v tQET whose extensors are formed from $ by finitely 
many operations of A, V, ~, K, t ,  and linear combination, and taking limits. 
The same construction of  functions and more general kinds of  mappings 
may be applied in C set theory by restricting Q(t )  to classical extensors. 

It is not supposed that this completes the construction of Q. We lack 
completely the apparatus of letter variables and their quantification, for 
example. What we have, however, is enough for the analysis of some simple 
finite structures, which will occupy us for a time. 

8. TIME 

We show here the new possibilities opened by Q for a quantum theory 
of time, leaving the extension to quantum-spacetime to a later paper. 

Set theory is not a true language for C physics, but merely a syntax, 
because the meaning of its symbols varies from application to application. 
To make physical languages out of set theory it is customary to give various 
physical interpretations to numbers (and therefore ultimately to the mathe- 
matical operation ~ used to make numbers) depending on their application, 
thus introducing non-set-theoretic concepts. For Peano, the operator ~ (the 
classical ~, not the quantum, of course) generated the natural numbers N 
as the sequence 

1, ~ o l ,  ~ o l ,  ~ e l  . . . .  (16) 
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Since he called ~cr "the successor of  a ,"  his N is at least metaphorical ly a 
time axis. In mechanics, however, we use the reals ~ as time axis. 

In Q we require a uniform interpretation of ~ as for the other symbols 
of  Q. 

Now ~ is the source of  the infinity of  sets in Q, the principal infinite 
set in physics is the time axis, and our experience with other infinite sets 
depends on the infinity of  times. Therefore we suppose that ~ represents a 
time step~ as suggested by Peano's  terminology. The size of  this step is a 
fundamental  constant 1~ with the dimensions of  time. We suppose that there 
is also a quantum of length cr associated with i~. 

This means that three fundamental  constants are built into Q: the 
quantum of  action, the speed of light, and the fundamental  time, fixing the 
scale of  nature. 

It is not proposed that the construction of  Q is completed by this 
interpretation; that is to be judged by experimental success. To illustrate 
the use of  Q in modeling spacetime, we contrast four time manifolds of  
time t called quantum, discrete, coherent, and differential. 

Quantum Time Manifold. This is the Hilbert space T <  QET gene- 
rated by 1 and ~, provided with the successor operator  ~ as element of  
structure. 

Differential Time Manifold. Here t is a continuous real variable and 
obeys the commutat ion relation 

[0, t]--- 1 (17) 

with the time derivative 0 = O/Ot, related to energy by E = ihO. In this standard 
theory of  time, t and 0 both correspond to diagonalizable unbounded 
operators. 

In the functional (diachronic) version of this theory, which is the one 
we employ, there is an ideal (unnormalizable) vector (t] representing a point 
of  time for each value of  the time coordinate t, as well as a dual vector t t(, 
with 

It'(t[ = 6 ( t ' -  t) (18) 

This delta-function becomes a four-dimensional one in spacetime theory 
and is the source of  all the divergencies of field theory. We call the crucial 
quantity ]t'(t I the instant form factor. 

Such operators of  time t and energy iO may be represented in Q by 

g -4- t/, 
0 = * ~ - ~ : = 6 ,  t =  :=~- 

2 
(19) 

= t -  20, = t 
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With this correspondence, and with a positive-definite metric [14~11, 
neither t nor 0 has normalizable eigenvectors, but both have complete 
continuous spectra, and in that sense are diagonalizable. Nevertheless, the 
infinitesimal derivative 0 is represented exactly by a finite difference operator 

in this ~ representation. 
Two ways to regularize spacetime are suggested by this theory and 

exemplified here. One is to replace the continuous spectrum of t by a 
discrete spectrum and the Dirac 8-function of (18) by a Kronecker 8- 
function, which is finite. This is the discrete theory of time; it abandons 
invariance under time translation and the infinite spectrum of energy. The 
other is to retain the t continuum, but to replace the 8-function of (17) by 
a regular function that approximates the ~-function but has half-width 
13 > 0. That is, instants of time overlap slightly. This means that t is not a 
Hermitian operator; an example of this procedure is the coherent theory 
of time. 

Discrete Time Manifold. Now t is not a real variable, but the number 
operator for units of time or chronons. If  we use *~ and ~ as bosonic 
annihilator and creator of the hypothetical chronons, then instead of (19) 
we have 

t = 13~*~ = 0, I3, 213,... (20) 

We may retain the usual commutation relation (17) here only if E is 
a periodic variable, defined only modulo 1/n. In this theory the apparent 
continuity of t is then supposed to be an error due to lack of resolution. 

Coherent Time Manifold. In this theory macroscopic spacetime is sup- 
posed to be a macroscopic quantum condensation like superconductivity 
(Finkelstein, 1988). The time variable t of  C mechanics and CQ quantum 
mechanics is supposed to arise from the underlying Q theory as the classical 
parameter of a coherent state of a boson oscillator. In one toy model of 
this kind, time and energy are given by 

O:=,, t:=*~, [~t, t ] = l  (21) 

instead of (19), in units of/3 = 1. With this choice, and a positive-definite 
metric I1 11, the operator t has an overcomplete family of normalized 
eigenvectors It(, and 0 = *t has none. 

To see this, we imitate the theory of  the overcomplete family of 
"classical" or "coherent"  states of the space coordinate x of a harmonic 
oscillator (Klauder and Sudarshan, 1968), replacing the oscillator coordin- 
ate x by the time coordinate t. The role of the harmonic oscillator ground- 
state vector is played by the vector (01 = ~. 
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We construct an overcomplete set of  vectors (t I representing instants 
of time by applying a unitary displacement operator e 'a to the first flash (0[: 

( t ] = e  ' a , (0 [ ,  6:= + _ ~  (22) 

Here the variable t is a real parameter of the coherent instant (t I. The 
coherent theory synthesizes the discrete spectrum of the oscillator with the 
continuous translational symmetry of the time axis. The instant form factor 
is then the Gaussian 

[t,(t I = 13-1 e x p [ - � 8 9  t)2/132] (23) 

We have restored the fundamental time constant 13 to show how this form 
factor approaches a &function as 13-> 0. 

This is a promising regularization of the singularity (19) in the standard 
theory. It promises, in particular, to eliminate all the infinities of field theory 
at once. 

The next step in this program should be the extension from time to 
spacetime. What is fundamental is the quantum manifold (QM). It contains 
the discrete and coherent manifold (AM, CM) as different bases, and the 
differential manifold (dM) as a singular limit of the coherent. The one- 
dimensional lattice of  the above model would then become a four- 
dimensional one; disclinations in this lattice would be the sources of gravity, 
and more general defects the sources of other gauge fields, as the dislocations 
of solid-state physics are the source of the Burgers vector or torsion. 

There is a natural way to model the four-dimensional commutation 
relations 

[0,,, x ~] = 6~, ~ (24) 

within Q. One adjoins to QET two generators, basic spinor "fermions," 
proper  first-degree extensors e0, el. Pairs of e's are then pseudoboson 
vectors. Symmetrized sequences of  such pairs provide macroscopic vectors. 
This construction has been called the "superconducting" vacuum. 

The attempt to extend (23) from the time axis to Minkowski spacetime 
by purely formal analogy fails swiftly. It suggests four annihilators x ~ 
(/, = 0, 1, 2, 3) and four creators O~, related by 

o,. = *x~ (25) 

and a point form factor 

[x'(xl = e -~x'-x~/~ (26) 

where x is a point (x ~) of  Minkowski spacetime and ( x ' -  x) 2 is the square 
of  the proper  time interval. The form factor (26) is well-behaved for timelike 
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intervals, but diverges for spacelike intervals, violating causality. Moreover, 
the formal covariant generalization of (21), 

[*x", x ~] = g,V (27) 

combined with the assumption of  a normalizable origin (0[, with x~'(01 = 0 
and 10(01 = 1, leads to a nondefinite Hilbert-space metric t. This is clearly 
not the correct extension to spacetime. 

A more acceptable extension to Minkowski spacetime is now being 
sought within the Q framework. Most likely the four-dimensional form 
factor is not merely an inner product of the form Ix'(xl, but has the form 
Ix'(cr(xl depending on a spacelike surface o- defined by the experimenter. 
For example, a covariant point form factor in four dimensions of this form 
which approaches a &function as ~--> 0 is 

Ix'(o-(x[ = e x p [ -  �89 - t)2/l'l 2] e x p [ -  l (x  ' -  X)2/~'] 2] (28) 

where t and x are the components of x"  normal and parallel to o-. 
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